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A relatively novel formulation of the Navier-Stokes equations is evaluated for obtaining 
solutions of l-dimensional incompressible fluid flow and convective heat transfer problems. A 
vorticity transport equation along with two Poisson equations for the velocity components 
and the energy equation are solved by a finite difference scheme. A direct solution procedure is 
used for solving simultaneously the dependent variables along a grid line, using a block 
tridiagonai matrix algorithm. As test problems, laminar flow motion and heat transfer in a 
square cavity and in a horizontal concentric annulus induced by various strength of buoyancy 
and external shear forces are investigated. The formulation is found to be stable for high 
Reynolds and Gr-ashof numbers and has features that may be desirable fat solving a wide 
variety of flow and heat transfer problems. C 1956 Academic Press, IX 

INTRODUCTION 

The vorticity-stream function (o - I/I) formulation has long been used in the for- 
mulations of the incompressible, viscous flow problems. Since the early 1970s there 
has been a noticeable shift of interest from the vorticity-stream function for- 
mulations to primitive variable (U - u - p) formulations. An account of both for- 
mulations, using finite difference methods, is well documented by Roache [I ]. 

The vorticity-stream function formulation has the major advantage of avoiding 
the continuity equation and the explicit appearance of the pressure. For steady 
flow, an iteration is usually introduced to handle the vorticity boundary condition 
at a solid surface. This iteration is in addition to the iteration required to solve the 
nonlinear vorticity transport equation. The o - $ formulation has serious 
limitations in calculating flows within multiply connected bodies where the mass 
flow rate is not known a priori [a]. Also the calculation of vorticity at the solid 
wails requires the evaluation of a second-order derivative of the stream function at 
the wall. Finite difference primitive variable formulations have been used with suc- 
cess by several investigators [ 3-51. The u - v - p formulations for incompressib?e 
Rows suffer from the limitation that there arc no obvious equations for obtaining 
the pressure and difficulties in specifying the boundary condition for the pressure at 
sohd walls. 
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A relatively novel formulation which alleviates most of the drawbacks mentioned 
above by employing the vorticity and velocity components is investigated in detail 
here for solving viscous incompressible fluid flow and heat transfer problems. The 
formulation has previously been used by Fasel and co-workers [S-S] for solving 
hydrodynamic stability problems and by Dennis et al. [9] for a 3-dimensional fluid 
flow problem for relatively low Reynolds number ranges. Though the formulation 
was used with success in the above cases, it has been rarely used in the prediction of 
convective heat transfer problems. An extensive search revealed that Schonauer et 
al. [lo] had applied the formulation to the natural convection problem in a square 
cavity. Very little heat transfer information is, however, reported in the paper. No 
detailed flow or temperature field solutions are presented either. It has been obser- 
ved that the above formulation gives poor results when a sequential “one variable 
at a time” type iteration procedure is employed. This is particularly the case for 
high Reynolds or Rayleigh number flows. When point or line-by-line iteration 
schemes (with a sequential, “one variable at a time” type approach) are employed, 
the vorticity boundary conditions at solid walls lag behind the iteration cycle as the 
velocity values at the near wall nodes have to be obtained from the previous 
iteration. This drawback is eliminated in the direct solution procedure employed 
here. The vorticity and velocity components (including the boundary values) are 
solved simultaneously along a given grid line. This type of direct solution 
procedures are quite common in aerodynamics, but have rarely been used for 
incompressible viscous flows [ 111. 

The vorticity-velocity formulation (o - u - v) investigated in this paper has been 
found to be highly stable for a wide range of Reynold and Rayleigh numbers. Since 
this is a higher order formulation, it is expected that less restrictive outflow boun- 
dary conditions can be considered if such boundaries are present in a given 
problem. The formulation also appears to be suitable for predicting certain flows 
within multiply connected bodies, where the net flow rate is not known beforehand. 

TEST PROBLEMS 

In order to study the applicability of the formulation, fluid flow and heat transfer 
problems in a square cavity and horizontal concentric annulus are considered. For 
the square cavity, the coordinate system is defined in Fig. 1. An insulated top wall 
(moving or stationary) is considered and the left and right vertical walls are dif- 
ferentially heated to maintain constant temperatures. The bottom wall is also taken 
to be insulated. For the annulus problem shown in Fig. 2, the inner and outer cylin- 
ders are considered to be the isothermal surfaces. Both stationary and rotating 
inner cylinders are considered. 

Governing Equations 

The flow and heat transfer phenomena to be investigated here are described by 
the complete Navier-Stokes and energy equations for two dimensional laminar 
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Frc. 1. Geometry and the given boundary conditions for a square cavity. 
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FIG. 2. Geometry and the given boundary conditions for a horizontal concentric annulus. 
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incompressible flows. The viscous dissipation term in the energy equation is neglec- 
ted and the Boussinesq approximation is invoked for the buoyancy induced body 
force term in the Navier-Stokes equations. 

In the present formulation, within the framework of the Cartesian coordinate 
system defined in Fig. 1, the unsteady Navier-Stokes equations are expressed in the 
vorticity transport form: 

aw a 2 

r+~(Uw)+P(,,)=~+~+cr~ 
dY a9 

where the vorticity is defined as 

au au 
w=z-L’ 

and the continuity equation is given as 

&F+“=(-J. 
ax ay 

(1) 

(2) 

(3) 

The two Poisson equations for the velocity components are expressed as 

ah a% aw 
Q+dyz= -ay (4) 

and 

a% a% aw 
jjg+v=x. (5) 

The energy equation is similar to the vorticity equation (1) and can be expressed as 

(6) 

The two Poisson equations can be derived from the definition of vorticity, 
Eq. (2), by differentiating it with respect to y and x respectively, and by making use 
of the continuity condition (3). Equations (1) along with (4))(6) represent the 
governing equations in the vorticityyvelocity formulation to study the incom- 
pressible viscous flow problems. For a given problem the above coupled equations 
system needs to be solved along with appropriate boundary conditions. The vor- 
ticity boundary conditions at the walls introduce additional coupling to the system. 
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The dependent variables above are given in non-dimensional forms an 
variables are defined as follows: 

W*L2 (Jj=- T= 
T*-T, 

v ’ T, - T,’ 
f=C 

e2 : 

where v is the kinematic viscosity of the fluid, L is the cavity length, T, and TC are 
the right and left vertical wall temperatures, respectively. The starred (*) variables 
denote dimensional quantities. 

For the concentric annulus problem the governing equations are written in cyhn- 
dricai polar coordinates and can be found elsewhere [ 121. 

For the square cavity, the following boundary conditions are used: 

u = 0, v = 0, 
au 

w=z> T=O atx=Q,O<y<l, 

u = 0, v = 0, 
i3V (Jj=- 
8X' 

T=l atx=l,O<y<l, 

u = 0, v = 0, 
au aT WE--.- -=o 
a,~’ al 

at o<x< 1, y=o, 

and 

u=Re, v = 0, 
au 8T 

“=-@ -p atO<x< 1: y= 1, 

where the Reynolds number is given as Re = UL/v, U being the velocity of the mov- 
ing wall. 

For the cylindrical annulus problems, whose dependent variables are ~o~~d~rne~~ 
sionalized with respect to the annulus gap width and the temperature difference 
between the inner and outer cylinder, the following boundary conditions are 
specified: 

u = 0, v=Re, ,I;.g(yV), T=l at v=r,,O<tI<2r;, 

u = 0, v = 0, T=Q alr=r,,0<Q<2713 

where the rotational Reynolds number is given as Re = rPQ;ZE/v, Q being the 
angular velocity of the inner cylinder, yi and rO are the radii of the inner and outer 
cylinders, respectively. The angle 0 is measured counterclockwise from the 
downward vertical line. The star (*) denotes a dimensional quantity as before. 
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The Grashof (Gr) and Prandtl (Pr) numbers are defined as follows: 

Gr = gP( TH - 7,) L3 
V2 

pr=li 
a 

where g is the gravitational acceleration, /? the thermal expansion coefficient of the 
fluid, (T, - T,) the temperature difference of the isothermal walls of the problems, 
L the cavity length (for the square cavity) or the gap width (for the annulus), and c( 
thermal diffusivity of the fluid. The constant fluid properties are evaluated at the 
average temperatures of the isothermal walls. 

A disadvantage of the (o - u - u) system, when compared to the (w - tj) system, 
is that storage for one more variable and, therefore, one additional 2-dimensional 
array is required for the steady as well as the unsteady problem. However, with 
respect to storage this system is equivalent or even superior to the (U-V-~) 
system, since the steady problem requires the same number of arrays while the 
unsteady problem calls for fewer arrays. An advantage of the present formulation 
over the (w - $) system is that the velocity components u and u are readily 
available when required, e.g., for the transient period in unsteady flow problems. 

There are certain aspects of this formulation that require special attention [IS]. 
Although continuity was assumed to be satisfied for derivation of Eqs. (4) and (5) 
it is not necessarily guaranteed for the difference equations based on the o - u - u 
formulation. Differentiating Eqs. (4) and (5) for x and y, respectively, and adding 
the resulting equations, it can be shown that 

&)+-$(D)=O. 
From the “maximum principle” it follows that IDI is maximal on the boundary. 
Thus it can be concluded that continuity (D =0) is guaranteed in the entire 
integration domain if it is satisfied on the boundary. Thus, if care is taken to satisfy 
the continuity condition to a high degree of accuracy on the boundaries, mass con- 
servation is guaranteed to even higher accuracy in the interior of the integration 
domain. Similar consideration applies to the vorticity definition. It should be noted 
that for the class of problems investigated in the present paper, the continuity con- 
dition is automatically satisfied on the boundaries by the presence of no-slip walls. 

SOLUTION METHOD 

A direct solution method (along a grid line) is presented here for solving the 
system of coupled differential equations via a block tridiagonal matrix algorithm. 
The set of governing equations is discretized by a control-volume based finite dif- 
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ference method. The convective terms are approximated by a hybrid differencing 
scheme [I31 and a fully implicit transient scheme is employed. It is seen that the 
vorticity and velocity equations (1) and (4))(5) are coupled and there is aa 
additional coupling through the wall boundary conditions. However; the energy 
equation (6) is coupled to the vorticity and velocity equations by the source term in 
the vorticity equation and the convection terms in the energy equation itself. The 
finite difference approximate equations to these oblems must be solve 
iteratively. This is usually accomplished by the lin on process of ern~~~y~~g 
the results of previous iteration in calculating the coefficients of the non-linear con- 
vective terms. In the present application of interest in the ~~ort~c~ty~~~~ioc~ty for- 
mulation, the difference equations are solved directly for a given line of grid points 
at constant x (or constant 0 for the polar coordinate). The iscretized system can 
be thought of as an ensemble of several tridiagonal subsystems coupled through 
diagonal submatrices. The system has the form: 

where the indices i and j represent spatial location and 4; denotes the values of the 
associated dependent variable d’ at the previous time level. The above equation is 
written for each dependent variable c@’ (k = 1,2,..., m, -where m is the number of the 
dependent variables). The vorticity boundary conditions along the walls at constant 
x (or 8) can also be cast into the above form, with forward or backward finite dif- 
ference expressions of the second-order accuracy. The resulting equation set forms a 
block-tridiagonal system for the given grid line of constant x (or O), to which a 
block-tridiagonal matrix algorithm is applied to obtain a solution. It is to be noted 
that along the given grid line ail values of 4” are considered at the same iteration 
level. The solution of the whole domain is obtained by applying the above solution 
algorithm consecutively to all the grid lines in the positive x (or 8) direction, and 
then, the sweep direction is reversed. To accelerate convergence, the discretize 
equation set with a similar form to Eq. (8) can also be formed along grid lines of 
constant y (or v) and the above two-way sweeping is performed. This four direc- 
tional sweep is especially important for the square cavity problem where walls are 
present along both constant x and y lines. 

The iteration is terminated when values of the dependent variables at each grid 
point satisfy the following convergence criterion: 

maximum I(& - 4k i)/(dk)maximuml d lop5 (k = 1, 2,..., m), 

where 4” stands for any dependent variable, and n the iteration level. Also. an 
energy balance check was performed before the iteration scheme is terminated. The 
mean Nusselt numbers of the cold and hot walls agreed to 1% or better for all the 
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cases studied here. In addition, calculations were made to ensure the satisfaction of 
the mass balance conditions in the entire domain for all the computations in order 
to validate the self-consistency of the present formulation. In all cases mass balances 
were satisfied within 0.05%. 

RESULTS AND DISCUSSIONS 

Results were obtained for forced, free, and mixed convection problems in a 
square cavity and free and mixed convection problems in the cylindrical annulus 
using the (o - u - v) formulation. Although the computations were carried out with 
a fully implicit scheme in time, only steady state solutions are presented here. In all 
cases steady states are reached. These results demonstrate the applicability of the 
vorticity-velocity formulation, which up to now has been ignored by a majority of 
the investigators in convective heat transfer. The mixed convection problems con- 
sidered in the cylindrical annulus are significant, as the problem is difficult to 
analyze in the vorticity-stream function formulation due to the unknown mass flow 
rate through the cylindrical annulus. 

Square Cavity Problem 

Forced convection problems were solved first for the square cavity by setting 
Gr = 0 in the formulation, which decouples the energy equation from the vorticity 
transport and velocity equations. The driving force of the fluid motion is the sliding 
top in this case. Although the vorticity at the two upper corners takes an infinite 
value, the present five-point finite difference method does not suffer from this dif- 
ficulty. This so-called “driven cavity” problem has been widely used by investigators 
to evaluate numerical schemes in the past [14, 151. Curiously, though the 
hydrodynamic problem has been solved by many researchers, no heat transfer 
results for the forced convection case could be found in the literature. Nusselt num- 
bers for a similar problem have been reported by Chen et al. [ 161 but different tem- 
perature boundary conditions were used in that case. Thus for the forced convec- 
tion problems, only flow characteristics obtained with the present formulation 
could be compared with previous studies. 

For the forced convection in the square cavity, results were obtained for the 
Reynolds number ranging from 10’ to 5 x 103. Constant fluid properties with the 
Prandtl number value of 0.72 were used for all cases. A 51 x 51 uniform mesh was 
employed for the Reynolds number up to 400 and the number of grid points were 
increased up to 81 x 81 for Re beyond that value in order to obtain grid indepen- 
dent results with the uniform mesh system. The results obtained for lower Reynolds 
number cases were used as the initial data of the computation for higher Reynolds 
number cases. No under-relaxation factor was used for the forced convection 
studies. 

Figure 3 shows the u velocity distributions at the cavity vertical mid-plane 
(x = 0.5) and u profiles at the horizontal mid-plane ( y = 0.5) for Re = 400, 103, and 
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FIG. 3. Profiles of u and I; along the cavity vertical and horizontal mid-planes (x=0.5 and ~-0.5. 
respectively) for different moving lid velocities (Re) (Ra = 0). 

5 x 103. For lower Reynolds numbers (not shown here) the predictions had 
excellent agreement with previous studies [ 171. The u and v profiles at Re = 400 are 
compared with the solutions given by Olson [I5 ]. Very good agreements are 
obtained in this case. No numerical instabilities were observed in the solution 
procedure. 

Figure 4 gives the streamlines ($/Re) computed from the velocity field at 
e = 1000. The results are in good qualitative agreement with the predictions given 

by de Vahl vis and Mallinson [ 181. The temperature results in this case could 
not be corn ed with previous studies due to the lack of results for the same 
geometry and temperature boundary conditions in the literature. It was, however, 
observed that a very large temperature gradient occurs near the hot wall as 
Reynolds number increases. The local Nusselt number at the hot vertical wall 
remains fairly uniform for most of the length and then increases rapi 
ing lid is approached. The cold wall characteristics are different and the Nusselt 
number peaks only at the middle in this case. 
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” = Re 

FIG. 4. Stream function (t+b/Re) contours at Re = 1000 (d($/Re) = 0.014) (Ra = 0). 

Free convection results in the cavity are presented next, obtained by the vor- 
ticity-velocity formulation. The top wall was considered to be stationary and the 
fluid motion is caused solely by the buoyancy effects. The Rayleigh number Ra 
(= Gr . Pr) was varied from lo2 to lo6 and a constant Prandtl number of 0.72 was 
used. A 31 x 31 mesh was used for the lower Rayleigh numbers and it was gradually 
increased to 81 x 81 for the highest Rayleigh number studied. The natural convec- 
tion results were compared with a recent bench mark numerical solution of the 
same problem by de Vahl Davis [19]. In general, the agreements of the present 
solution obtained by the vorticity-velocity formulation with those given in [ 191 are 
excellent. 

The u and zi profiles at the vertical and horizontal mid-sections are shown in 
Fig. 5 for Ra = 104. The profiles are symmetric and the location and magnitude of 
the maximum values of u and u as given in [ 191 are also shown in same figure. The 
agreement appears to be very good. With higher Rayleigh numbers, the velocity 
peaks move closer to the walls, indicating formation of boundary layers. The 
isotherms obtained at Ra = lo4 are plotted in Fig. 6 and they are found to undergo 
an inversion at the central region of the cavity. 

The local Nusselt number (Nu) distributions at the cold and hot walls for 
various Rayleigh number is shown in Fig. 7. The location and magnitude of 
maximum Nusselt numbers given in [ 191 are also shown in the figure. The solution 
by Jones [20] is also compared with the present solutions and the agreement is 
found to be good. 

The mean Nusselt number (&) predictions are compared with those given in 
[19] in Fig. 8. The two sets of predictions almost overlapped each other. No 
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FIG. 5. Profiles of u and ti along the cavity vertical and horizontal mid-planes (s=O.5 and ~=0.5- 
respectively) with Ra = 10’ (natural convection). 

FIG. 6. Isotherms (T) at Ra = lo4 (AT= 0.1) (natural convection). 
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FIG. 7. Distribution of the local Nusselt number (Nu) along the cavity cold and hot walls (x = 0 and 
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FIG. 8. Change in the average Nusselt number (Xi) with Ra (natural convection), 
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FIG. 9. Profiles of u at the cavity mid-plane (.Y = 0.5) at Ra = 10” for various values of Gr.!Re’ 
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FIG. 10. Distribution of the average Nusselt number as a function of Reynolds number for various 
values of Cr/ReZ. 
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solutions above Ra = lo6 were attempted as the flow may no longer be laminar and 
stable in those cases. 

The mixed convection results obtained with the vorticityPvelocity formulation are 
presented in Figs. 9 and 10. Unfortunately, no past work could be found in the 
literature for mixed convection problems with the geometry and boundary con- 
ditions studied here. The u velocity distributions at the vertical mid-plane are 
shown in Fig. 9 for the mixed convection problem at Ra = 104. Due to the 
buoyancy induced flow, two cell appear for Gr/Re2 = 0.2 (Compare with Figs. 3 and 
5). The mean heat transfer characteristics of the mixed convection problems studied 
are shown in Fig. 10. The mean Nusselt number is plotted against the Reynolds 
number for various Rayleigh numbers. The forced convection results are also shown 
for comparison. For the range of parameters studied, the Nusselt number predic- 
tions at Ra = lo2 were not much different from those at Ra = 0 (forced convection). 
At higher Reynolds numbers, the predictions for different Ra approached the forced 
convection values, as expected. No comparisons with published data, however, 
could be made due to the lack of such results in the literature. 

7 I 
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1 Present Method 
--- Outer Cylinder 

- 0@ n Kuehn & Goldstein [21] ; 12 

105 
1 ! 

- Ra = 

120 150 180 

8 i deg. i 

FIG. 11. Distributions of the local equivalent conductivity (A_) on the inner and outer cylinder sur- 

faces for various values of Ra. 
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Annulus Problem 
Natural convection in the annulus between the concentric cylinders is 

investigated next. The ratio of the gap width to the inner cylinder diameter is held 
fixed at 0.8. The stationary inner cylinder is considered first. The direction of the 
gravitational force is taken as 0 = 0”. The Rayleigh number, defined with the gap 
width and the temperature difference of the two isothermal cylinder surfaces, was 
varied from lo* to 105. Beyond the maximum Ra studied; the flow is thought to 
become turbulent [21]. The Prandtl number was set at a constant value, 0.72. The 
entire domain of the annulus was solved without considering symmetry planes. The 
uniform mesh system was considered and the number of grid points used for the 
computations was 41(r) x 72(9) for Ra up to lo4 and 51(r) x 84(o) for 
that value. To compute higher Ra cases, solutions for lower Ra are used as the 
initial guesses of the iterative solution procedure as before. No under-relaxation was 
necessary for all the cases studied. 

The distribution of the local equivalent conductivity (L) on the cylinder surfaces 
is shown in Fig. 11. The equivalent conductivity is defined as the actual heat flux 
devided by the heat flux that would occur by pure conduction in the absence of 

cc 

” 

30 

2c 

10 

0 

e 2 = 900 

me- 8 = 270° 

FIG. 12 Angular velocity distributions for the annulus with rotating inner cylinder at Ra = 10’. 
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fluid motion. For the inner cylinder, the location of the maximum equivalent con- 
ductivity is at the bottom stagnation point and the minimum value occurs at the 
top stagnation point. At Ra = 103, the curves for both the inner and outer cylinders 
lay about ,4 = 1, which indicates that heat transfer is in the conduction regime. 
However, for Ra over 5 x 104, sharp peaks of ;1 appear at the top region of the outer 
cylinder due to the presence of impinping plumes there. The results in [21] are also 
plotted in the figure and show good agreement with the present predictions. 

Finally, results for mixed convective flows in the annulus are presented where the 
heated inner cylinder is rotating. The net flow rate through the annulus is not 
known a priori for various combinations of the Grashof and rotational Reynolds 
number. The vorticity-stream function formulation is unsuitable for problems of 
this class [ 121. The vorticity-velocity formulation along with the block tridiagonal 
matrix algorithm was found to give good results in this case. It can be shown that 
the parameter g= Gr/Re2 determines the relative strength of the effects of the 
buoyancy and centrifugal forces in the above problem. The pure natural convective 
flows reported earlier correspond to the case (T = co. Figure 12 displays the radial 
angular velocity profiles at Gr = 1.39 x lo3 (Ra = 103) for various values of (T. The 
inner cylinder is considered to be rotating counterclockwise and the results are 
shown for 0=90” (the ascending side) and 8= 270” (the descending side). For the 
ascending side buoyancy enhances the rotation induced flow whereas it suppresses 
the flow in the descending side. The average equivalent conductivities were found to 
decrease slightly for decreasing values of C. This is because the rate of growth of the 
thermal boundary layer on the ascending side of the inner cylinder is less rapid than 
that on the descending side. It is conjectured that the interaction seen between the 
buoyant and the centrifugal effects could delay the transition to the Taylor-vortex 
flow [22]. This however, needs further careful study. 

CONCLUSION 

The study has successfully demonstrated the applicability of the vorticity-velocity 
formulation in solving a variety of fluid flow and heat transfer problems in different 
geometries. A direct solution procedure is used for solving simultaneously (instead 
of the traditional “one variable at a time” approach) along a grid line using a block 
tridiagonal matrix algorithm. The formulation also allows relatively easy extension 
to full three dimensions where six dependent variables (for the Navier-Stokes 
equations) are required. With the advent of powerful computers, the problem of 
storage requirement has lessened and the formulation may be attractive due to its 
other advantages. The formulation is found to give “robust” computer codes which 
employ standard numerical methods of solution, without requiring any special 
treatments like “staggered grids.” 

The computation were carried out on a PRIME 850 computer. The approximate 
number of iterations required for convergence at each time level varies from 100 to 
500 depending on the values of the Reynolds and Rayleigh numbers of the 
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problems as well as on the number of grid points. Typical CPU times varie 
thirty minutes to three hours. 

Tnis material is based upon work supported by the National Science Foundation under Grant MEA 
83075606. 
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